Delta spark

Aug 21, 2019 · Now, Spark only has to perform incremental processing of 0000011.json and 0000012.json to have the current state of the table. Spark then caches version 12 of the table in memory. By following this workflow, Delta Lake is able to use Spark to keep the state of a table updated at all times in an efficient manner.

Delta spark. This might be infeasible, or atleast introduce a lot of overhead, if you want to build data applications like Streamlit apps or ML APIs ontop of the data in your Delta tables. This package tries to fix this, by providing a lightweight python wrapper around the delta file format, without any Spark dependencies. Installation. Install the package ...

Delta Lake also boasts the richest ecosystem of direct connectors such as Flink, Presto, and Trino, giving you the ability to read and write to Delta Lake directly from the most popular engines without Apache Spark. Thanks to the Delta Lake contributors from Scribd and Back Market, you can also use Delta Rust - a foundational Delta Lake library ...

Nov 17, 2019 · Firstly, let’s see how to get Delta Lake to out Spark Notebook. pip install --upgrade pyspark pyspark --packages io.delta:delta-core_2.11:0.4.0. First command is not necessary if you already ... Delta Lake is an open-source storage layer that brings ACID (atomicity, consistency, isolation, and durability) transactions to Apache Spark and big data workloads. The current version of Delta Lake included with Azure Synapse has language support for Scala, PySpark, and .NET and is compatible with Linux Foundation Delta Lake.These will be used for configuring Spark. Delta Lake 0.7.0 or above. Apache Spark 3.0 or above. Apache Spark used must be built with Hadoop 3.2 or above. For example, a possible combination that will work is Delta 0.7.0 or above, along with Apache Spark 3.0 compiled and deployed with Hadoop 3.2.Jun 29, 2021 · It looks like this is removed for python when combining delta-spark 0.8 with Spark 3.0+. Since you are currently running on a Spark 2.4 pool you are still getting the ... You can upsert data from a source table, view, or DataFrame into a target Delta table using the merge operation. This operation is similar to the SQL MERGE INTO command but has additional support for deletes and extra conditions in updates, inserts, and deletes. Suppose you have a Spark DataFrame that contains new data for events with eventId.Jan 7, 2019 · Here's the detailed implementation of slowly changing dimension type 2 in Spark (Data frame and SQL) using exclusive join approach. Assuming that the source is sending a complete data file i.e. old, updated and new records. Steps: Load the recent file data to STG table Select all the expired records from HIST table. To walk through this post, we use Delta Lake version > 2.0.0, which is supported in Apache Spark 3.2.x. Choose the Delta Lake version compatible with your Spark version by visiting the Delta Lake releases page. We use an EMR Serverless application with version emr-6.9.0, which supports Spark version 3.3.0. Deploy your resources% python3 -m pip install delta-spark. Preparing a Raw Dataset. Here we are creating a dataframe of raw orders data which has 4 columns, account_id, address_id, order_id, and delivered_order_time ...

Aug 29, 2023 · You can directly ingest data with Delta Live Tables from most message buses. For more information about configuring access to cloud storage, see Cloud storage configuration. For formats not supported by Auto Loader, you can use Python or SQL to query any format supported by Apache Spark. See Load data with Delta Live Tables. Jul 8, 2019 · Delta Lake on Databricks has some performance optimizations as a result of being part of the Databricks Runtime; we're aiming for full API compatibility in OSS Delta Lake (though for some things like metastore support that requires changes only coming in Spark 3.0). Delta Sharing extends the ability to share data stored with Delta Lake to other clients. Delta Lake is built on top of Parquet, and as such, Azure Databricks also has optimized readers and writers for interacting with Parquet files. Databricks recommends using Delta Lake for all tables that receive regular updates or queries from Azure Databricks.Jul 10, 2023 · Retrieve Delta table history. You can retrieve information including the operations, user, and timestamp for each write to a Delta table by running the history command. The operations are returned in reverse chronological order. Table history retention is determined by the table setting delta.logRetentionDuration, which is 30 days by default. Apr 5, 2021 · Delta merge logic whenMatchedDelete case. I'm working on the delta merge logic and wanted to delete a row on the delta table when the row gets deleted on the latest dataframe read. df = spark.createDataFrame ( [ ('Java', "20000"), # create your data here, be consistent in the types. ('PHP', '40000'), ('Scala', '50000'), ('Python', '10000 ... This tutorial introduces common Delta Lake operations on Azure Databricks, including the following: Create a table. Upsert to a table. Read from a table. Display table history. Query an earlier version of a table. Optimize a table. Add a Z-order index. Vacuum unreferenced files.

The above Java program uses the Spark framework that reads employee data and saves the data in Delta Lake. To leverage delta lake features, the spark read format and write format has to be changed ...To walk through this post, we use Delta Lake version 2.0.0, which is supported in Apache Spark 3.2.x. Choose the Delta Lake version compatible with your Spark version by visiting the Delta Lake releases page. We create an EMR cluster using the AWS Command Line Interface (AWS CLI). We use Amazon EMR 6.7.0, which supports Spark version 3.2.1.When Azure Databricks processes a micro-batch of data in a stream-static join, the latest valid version of data from the static Delta table joins with the records present in the current micro-batch. Because the join is stateless, you do not need to configure watermarking and can process results with low latency.You can upsert data from a source table, view, or DataFrame into a target Delta table by using the MERGE SQL operation. Delta Lake supports inserts, updates and deletes in MERGE, and it supports extended syntax beyond the SQL standards to facilitate advanced use cases. Suppose you have a source table named people10mupdates or a source path at ...OPTIMIZE returns the file statistics (min, max, total, and so on) for the files removed and the files added by the operation. Optimize stats also contains the Z-Ordering statistics, the number of batches, and partitions optimized. You can also compact small files automatically using auto compaction. See Auto compaction for Delta Lake on Azure ...

Robertson drago funeral home obituaries.

Jan 7, 2019 · Here's the detailed implementation of slowly changing dimension type 2 in Spark (Data frame and SQL) using exclusive join approach. Assuming that the source is sending a complete data file i.e. old, updated and new records. Steps: Load the recent file data to STG table Select all the expired records from HIST table. Jun 29, 2021 · It looks like this is removed for python when combining delta-spark 0.8 with Spark 3.0+. Since you are currently running on a Spark 2.4 pool you are still getting the ... a fully-qualified class name of a custom implementation of org.apache.spark.sql.sources.DataSourceRegister. If USING is omitted, the default is DELTA. For any data_source other than DELTA you must also specify a LOCATION unless the table catalog is hive_metastore. The following applies to: Databricks RuntimeDelta Lake is an open source storage big data framework that supports Lakehouse architecture implementation. It works with computing engine like Spark, PrestoDB, Flink, Trino (Presto SQL) and Hive. The delta format files can be stored in cloud storages like GCS, Azure Data Lake Storage, AWS S3, HDFS, etc. It provides programming APIs for Scala ...Delta Lake on Databricks has some performance optimizations as a result of being part of the Databricks Runtime; we're aiming for full API compatibility in OSS Delta Lake (though for some things like metastore support that requires changes only coming in Spark 3.0).OPTIMIZE returns the file statistics (min, max, total, and so on) for the files removed and the files added by the operation. Optimize stats also contains the Z-Ordering statistics, the number of batches, and partitions optimized. You can also compact small files automatically using auto compaction. See Auto compaction for Delta Lake on Azure ...

To use this Azure Databricks Delta Lake connector, you need to set up a cluster in Azure Databricks. To copy data to delta lake, Copy activity invokes Azure Databricks cluster to read data from an Azure Storage, which is either your original source or a staging area to where the service firstly writes the source data via built-in staged copy.Delta Lake on Databricks has some performance optimizations as a result of being part of the Databricks Runtime; we're aiming for full API compatibility in OSS Delta Lake (though for some things like metastore support that requires changes only coming in Spark 3.0).Delta Live Tables infers the dependencies between these tables, ensuring updates occur in the correct order. For each dataset, Delta Live Tables compares the current state with the desired state and proceeds to create or update datasets using efficient processing methods. The settings of Delta Live Tables pipelines fall into two broad categories:Spark SQL is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. If you have questions about the system, ask on the Spark mailing lists. The Spark SQL developers welcome contributions. If you'd like to help out, read how to contribute to Spark, and send us a patch! Jul 10, 2023 · Retrieve Delta table history. You can retrieve information including the operations, user, and timestamp for each write to a Delta table by running the history command. The operations are returned in reverse chronological order. Table history retention is determined by the table setting delta.logRetentionDuration, which is 30 days by default. Delta Lake 1.0 or below to Delta Lake 1.1 or above. If the name of a partition column in a Delta table contains invalid characters (,;{}() \t=), you cannot read it in Delta Lake 1.1 and above, due to SPARK-36271.Jul 8, 2019 · Delta Lake on Databricks has some performance optimizations as a result of being part of the Databricks Runtime; we're aiming for full API compatibility in OSS Delta Lake (though for some things like metastore support that requires changes only coming in Spark 3.0). May 26, 2021 · Today, we’re launching a new open source project that simplifies cross-organization sharing: Delta Sharing, an open protocol for secure real-time exchange of large datasets, which enables secure data sharing across products for the first time. We’re developing Delta Sharing with partners at the top software and data providers in the world. Main class for programmatically interacting with Delta tables. You can create DeltaTable instances using the path of the Delta table.: deltaTable = DeltaTable.forPath(spark, "/path/to/table") In addition, you can convert an existing Parquet table in place into a Delta table.: Z-Ordering is a technique to colocate related information in the same set of files. This co-locality is automatically used by Delta Lake in data-skipping algorithms. This behavior dramatically reduces the amount of data that Delta Lake on Apache Spark needs to read. To Z-Order data, you specify the columns to order on in the ZORDER BY clause ...

So, let's start Spark Shell with delta lake enabled. spark-shell --packages io.delta:delta-core_2.11:0.3.0. view raw DL06.sh hosted with by GitHub. So, the delta lake comes as an additional package. All you need to do is to include this dependency in your project and start using it. Simple.

May 25, 2023 · Released: May 25, 2023 Project description Delta Lake Delta Lake is an open source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Delta Lake runs on top of your existing data lake and is fully compatible with Apache Spark APIs. Jul 10, 2023 · You can retrieve information including the operations, user, and timestamp for each write to a Delta table by running the history command. The operations are returned in reverse chronological order. Table history retention is determined by the table setting delta.logRetentionDuration, which is 30 days by default. Note. Follow these instructions to set up Delta Lake with Spark. You can run the steps in this guide on your local machine in the following two ways: Run interactively: Start the Spark shell (Scala or Python) with Delta Lake and run the code snippets interactively in the shell. Run as a project: Set up a Maven or SBT project (Scala or Java) with ...Aug 1, 2023 · Table streaming reads and writes. Delta Lake is deeply integrated with Spark Structured Streaming through readStream and writeStream.Delta Lake overcomes many of the limitations typically associated with streaming systems and files, including: Delta Live Tables infers the dependencies between these tables, ensuring updates occur in the correct order. For each dataset, Delta Live Tables compares the current state with the desired state and proceeds to create or update datasets using efficient processing methods. The settings of Delta Live Tables pipelines fall into two broad categories:The first entry point of data in the below architecture is Kafka, consumed by the Spark Streaming job and written in the form of a Delta Lake table. Let's see each component one by one. Event ...Jan 7, 2019 · Here's the detailed implementation of slowly changing dimension type 2 in Spark (Data frame and SQL) using exclusive join approach. Assuming that the source is sending a complete data file i.e. old, updated and new records. Steps: Load the recent file data to STG table Select all the expired records from HIST table. The above Java program uses the Spark framework that reads employee data and saves the data in Delta Lake. To leverage delta lake features, the spark read format and write format has to be changed ...Delta Lake is the first data lake protocol to enable identity columns for surrogate key generation. Delta Lake now supports creating IDENTITY columns that can automatically generate unique, auto-incrementing ID numbers when new rows are loaded. While these ID numbers may not be consecutive, Delta makes the best effort to keep the gap as small ...

Degdu.

1970 women.

Delta column mapping; What are deletion vectors? Delta Lake APIs; Storage configuration; Concurrency control; Access Delta tables from external data processing engines; Migration guide; Best practices; Frequently asked questions (FAQ) Releases. Release notes; Compatibility with Apache Spark; Delta Lake resources; Optimizations; Delta table ... Apr 15, 2023 · An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs - [Feature Request] Support Spark 3.4 · Issue #1696 · delta-io/delta Main class for programmatically interacting with Delta tables. You can create DeltaTable instances using the path of the Delta table.: deltaTable = DeltaTable.forPath(spark, "/path/to/table") In addition, you can convert an existing Parquet table in place into a Delta table.: The Spark shell and spark-submit tool support two ways to load configurations dynamically. The first is command line options, such as --master, as shown above. spark-submit can accept any Spark property using the --conf/-c flag, but uses special flags for properties that play a part in launching the Spark application.Apr 26, 2021 · Data versioning with Delta Lake. Delta Lake is an open-source project that powers the lakehouse architecture. While there are a few open-source lakehouse projects, we favor Delta Lake for its tight integration with Apache Spark™ and its supports for the following features: ACID transactions; Scalable metadata handling; Time travel; Schema ... If Delta files already exist you can directly run queries using Spark SQL on the directory of delta using the following syntax: SELECT * FROM delta. `/path/to/delta_directory` In most cases, you would want to create a table using delta files and operate on it using SQL. The notation is : CREATE TABLE USING DELTA LOCATIONTo walk through this post, we use Delta Lake version 2.0.0, which is supported in Apache Spark 3.2.x. Choose the Delta Lake version compatible with your Spark version by visiting the Delta Lake releases page. We create an EMR cluster using the AWS Command Line Interface (AWS CLI). We use Amazon EMR 6.7.0, which supports Spark version 3.2.1.Dec 21, 2020 · Delta Lake is an open source storage layer that brings reliability to data lakes. It provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Delta Lake is fully compatible with Apache Spark APIs. Learning objectives. In this module, you'll learn how to: Describe core features and capabilities of Delta Lake. Create and use Delta Lake tables in a Synapse Analytics Spark pool. Create Spark catalog tables for Delta Lake data. Use Delta Lake tables for streaming data. Query Delta Lake tables from a Synapse Analytics SQL pool. ….

Delta Sharing extends the ability to share data stored with Delta Lake to other clients. Delta Lake is built on top of Parquet, and as such, Azure Databricks also has optimized readers and writers for interacting with Parquet files. Databricks recommends using Delta Lake for all tables that receive regular updates or queries from Azure Databricks.The jars folder include all required jars for s3 file system as mentioned in ‘Apache Spark’ section above. ‘spark-defaults.conf’ will be the same configure file for your local spark. ‘generate_kubeconfig.sh’ is referenced from this github gist in order to generate kubeconfig for service account ‘spark’ which will be used by ...Aug 29, 2023 · You can directly ingest data with Delta Live Tables from most message buses. For more information about configuring access to cloud storage, see Cloud storage configuration. For formats not supported by Auto Loader, you can use Python or SQL to query any format supported by Apache Spark. See Load data with Delta Live Tables. Jun 29, 2021 · It looks like this is removed for python when combining delta-spark 0.8 with Spark 3.0+. Since you are currently running on a Spark 2.4 pool you are still getting the ... Dec 5, 2021 · Remove unused DELTA_SNAPSHOT_ISOLATION config Remove the `DELTA_SNAPSHOT_ISOLATION` internal config (`spark.databricks.delta.snapshotIsolation.enabled`), which was added as default-enabled to protect a then-new feature that stabilizes snapshots in Delta queries and transactions that scan the same table multiple times. Jan 14, 2023 · % python3 -m pip install delta-spark. Preparing a Raw Dataset. Here we are creating a dataframe of raw orders data which has 4 columns, account_id, address_id, order_id, and delivered_order_time ... Aug 28, 2023 · Delta Live Tables infers the dependencies between these tables, ensuring updates occur in the correct order. For each dataset, Delta Live Tables compares the current state with the desired state and proceeds to create or update datasets using efficient processing methods. The settings of Delta Live Tables pipelines fall into two broad categories: Remove unused DELTA_SNAPSHOT_ISOLATION config Remove the `DELTA_SNAPSHOT_ISOLATION` internal config (`spark.databricks.delta.snapshotIsolation.enabled`), which was added as default-enabled to protect a then-new feature that stabilizes snapshots in Delta queries and transactions that scan the same table multiple times. Delta spark, Jun 29, 2020 · Recently, i am encountering an issue in the databricks cluster where it could not accessing the delta table (unmanaged delta table) which parquet files are stored in the azure datalake gen2 storage account. The issue is it could not read/update from the… , May 25, 2023 · Released: May 25, 2023 Project description Delta Lake Delta Lake is an open source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Delta Lake runs on top of your existing data lake and is fully compatible with Apache Spark APIs. , May 26, 2021 · Today, we’re launching a new open source project that simplifies cross-organization sharing: Delta Sharing, an open protocol for secure real-time exchange of large datasets, which enables secure data sharing across products for the first time. We’re developing Delta Sharing with partners at the top software and data providers in the world. , Sep 29, 2022 · To walk through this post, we use Delta Lake version 2.0.0, which is supported in Apache Spark 3.2.x. Choose the Delta Lake version compatible with your Spark version by visiting the Delta Lake releases page. We create an EMR cluster using the AWS Command Line Interface (AWS CLI). We use Amazon EMR 6.7.0, which supports Spark version 3.2.1. , Recently, i am encountering an issue in the databricks cluster where it could not accessing the delta table (unmanaged delta table) which parquet files are stored in the azure datalake gen2 storage account. The issue is it could not read/update from the…, Jan 3, 2022 · The jars folder include all required jars for s3 file system as mentioned in ‘Apache Spark’ section above. ‘spark-defaults.conf’ will be the same configure file for your local spark. ‘generate_kubeconfig.sh’ is referenced from this github gist in order to generate kubeconfig for service account ‘spark’ which will be used by ... , delta data format. Ranking. #5164 in MvnRepository ( See Top Artifacts) #12 in Data Formats. Used By. 76 artifacts. Central (44) Version. Scala., OPTIMIZE returns the file statistics (min, max, total, and so on) for the files removed and the files added by the operation. Optimize stats also contains the Z-Ordering statistics, the number of batches, and partitions optimized. You can also compact small files automatically using auto compaction. See Auto compaction for Delta Lake on Azure ..., Delta will only read 2 partitions where part_col == 5 and 8 from the target delta store instead of all partitions. part_col is a column that the target delta data is partitioned by. It need not be present in the source data. Delta sink optimization options. In Settings tab, you find three more options to optimize delta sink transformation., Introduction. Delta Lake is an open source project that enables building a Lakehouse architecture on top of data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing on top of existing data lakes, such as S3, ADLS, GCS, and HDFS. ACID transactions on Spark: Serializable ..., Here's the detailed implementation of slowly changing dimension type 2 in Spark (Data frame and SQL) using exclusive join approach. Assuming that the source is sending a complete data file i.e. old, updated and new records. Steps: Load the recent file data to STG table Select all the expired records from HIST table., Released: May 25, 2023 Project description Delta Lake Delta Lake is an open source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Delta Lake runs on top of your existing data lake and is fully compatible with Apache Spark APIs., Please refer to the main Delta Lake repository if you want to learn more about the Delta Lake project. API documentation. Delta Standalone Java API docs; Flink/Delta Connector Java API docs; Delta Standalone. Delta Standalone, formerly known as the Delta Standalone Reader (DSR), is a JVM library to read and write Delta tables., The jars folder include all required jars for s3 file system as mentioned in ‘Apache Spark’ section above. ‘spark-defaults.conf’ will be the same configure file for your local spark. ‘generate_kubeconfig.sh’ is referenced from this github gist in order to generate kubeconfig for service account ‘spark’ which will be used by ..., Apr 26, 2021 · Data versioning with Delta Lake. Delta Lake is an open-source project that powers the lakehouse architecture. While there are a few open-source lakehouse projects, we favor Delta Lake for its tight integration with Apache Spark™ and its supports for the following features: ACID transactions; Scalable metadata handling; Time travel; Schema ... , Delta Sharing extends the ability to share data stored with Delta Lake to other clients. Delta Lake is built on top of Parquet, and as such, Azure Databricks also has optimized readers and writers for interacting with Parquet files. Databricks recommends using Delta Lake for all tables that receive regular updates or queries from Azure Databricks., Delta Lake is an open source storage layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable metadata handling, and unifies streaming and batch data processing. Delta Lake runs on top of your existing data lake and is fully compatible with Apache Spark APIs. , spark.databricks.delta.properties.defaults.<conf>. For example, to set the delta.appendOnly = true property for all new Delta Lake tables created in a session, set the following: SQL. SET spark.databricks.delta.properties.defaults.appendOnly = true. To modify table properties of existing tables, use SET TBLPROPERTIES., Aug 30, 2023 · August 30, 2023 Delta Lake is the optimized storage layer that provides the foundation for storing data and tables in the Databricks Lakehouse Platform. Delta Lake is open source software that extends Parquet data files with a file-based transaction log for ACID transactions and scalable metadata handling. , So, let's start Spark Shell with delta lake enabled. spark-shell --packages io.delta:delta-core_2.11:0.3.0. view raw DL06.sh hosted with by GitHub. So, the delta lake comes as an additional package. All you need to do is to include this dependency in your project and start using it. Simple. , Jun 29, 2020 · Recently, i am encountering an issue in the databricks cluster where it could not accessing the delta table (unmanaged delta table) which parquet files are stored in the azure datalake gen2 storage account. The issue is it could not read/update from the… , May 20, 2021 · Delta Lake is an open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs for Scala, Java, Rust, Ruby, and Python. , May I know how to configure the max file size while creating delta tables via spark-sql? Steps to reproduce. lets say parquet_tbl is the input table in parquet. spark.sql("create table delta_tbl1 using delta location 'file:/tmp/delta/tbl1' partitioned by (VendorID) TBLPROPERTIES ('delta.targetFileSize'='10485760') as select * from parquet_tbl");, Dec 16, 2020 · 33. Delta is storing the data as parquet, just has an additional layer over it with advanced features, providing history of events, (transaction log) and more flexibility on changing the content like, update, delete and merge capabilities. This link delta explains quite good how the files organized. One drawback that it can get very fragmented ... , Mar 3, 2023 · To walk through this post, we use Delta Lake version > 2.0.0, which is supported in Apache Spark 3.2.x. Choose the Delta Lake version compatible with your Spark version by visiting the Delta Lake releases page. We use an EMR Serverless application with version emr-6.9.0, which supports Spark version 3.3.0. Deploy your resources , Follow these instructions to set up Delta Lake with Spark. You can run the steps in this guide on your local machine in the following two ways: Run interactively: Start the Spark shell (Scala or Python) with Delta Lake and run the code snippets interactively in the shell. Run as a project: Set up a Maven or SBT project (Scala or Java) with ..., Spark SQL is developed as part of Apache Spark. It thus gets tested and updated with each Spark release. If you have questions about the system, ask on the Spark mailing lists. The Spark SQL developers welcome contributions. If you'd like to help out, read how to contribute to Spark, and send us a patch! , Jun 5, 2023 · You can also set delta.-prefixed properties during the first commit to a Delta table using Spark configurations.For example, to initialize a Delta table with the property delta.appendOnly=true, set the Spark configuration spark.databricks.delta.properties.defaults.appendOnly to true. , Learning objectives. In this module, you'll learn how to: Describe core features and capabilities of Delta Lake. Create and use Delta Lake tables in a Synapse Analytics Spark pool. Create Spark catalog tables for Delta Lake data. Use Delta Lake tables for streaming data. Query Delta Lake tables from a Synapse Analytics SQL pool. , The Delta Standalone Reader (DSR) is a JVM library that allows you to read Delta Lake tables without the need to use Apache Spark; i.e. it can be used by any application that cannot run Spark. The motivation behind creating DSR is to enable better integrations with other systems such as Presto, Athena, Redshift Spectrum, Snowflake, and Apache ..., Dec 19, 2022 · AWS Glue for Apache Spark natively supports Delta Lake. AWS Glue version 3.0 (Apache Spark 3.1.1) supports Delta Lake 1.0.0, and AWS Glue version 4.0 (Apache Spark 3.3.0) supports Delta Lake 2.1.0. With this native support for Delta Lake, what you need for configuring Delta Lake is to provide a single job parameter --datalake-formats delta ... , Aug 1, 2023 · Table streaming reads and writes. Delta Lake is deeply integrated with Spark Structured Streaming through readStream and writeStream.Delta Lake overcomes many of the limitations typically associated with streaming systems and files, including: , Line # 1 — we import SparkSession class from the pyspark.sql module. Line # 2 — We specify the dependencies that are required for Spark to work e.g. to allow Spark to interact with AWS (S3 in our case), use Delta Lake core etc. Line # 3 — We instantiate SparkSession object which marks as an entry point to use Spark in our script.